Jackson-Type Theorems for Approximation with Hermite-Birkhoff Interpolatory Side Conditions

R. K. Beatson
Department of Mathematics, University of Canterbury, Christchurch, New Zealand
Communicated by E. W. Cheney

Received June 4, 1976

1. Introduction

In this paper we obtain estimates for the cost of Hermite-Birkhoff interpolatory side conditions, placed on uniform approximation by trigonometric polynomials.

Given a positive integer κ; a finite set $t_{1}, \ldots, t_{\gamma}$ of distinct points in $-\pi \leqslant t<\pi$; for each $i=1, \ldots, \gamma$, a nonempty subset K_{i} of the set $\{0,1, \ldots, \kappa\}$; and $f \in C^{* \kappa}[-\pi, \pi]$, define the set of κ times continuously differentiable 2π periodic functions; the set $A_{\kappa}=\left\{g \in C^{* \kappa}[-\pi, \pi]: g^{(j)}\left(t_{i}\right)=f^{(j)}\left(t_{i}\right)\right.$; $\left.j \in K_{i} ; i=1, \ldots, \gamma\right\}$. Let N_{v} be the space of trigonometric polynomials of degree not exceeding ν. For each $\nu=0,1,2,3, \ldots$, define

$$
\begin{equation*}
E_{\nu}(f)=\inf _{g \in N_{v}}\|f-g\|, \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\|f-g\|=\sup _{-\pi \leqslant t \leqslant \pi}|f(t)-g(t)| . \tag{1.2}
\end{equation*}
$$

Similarly define $e_{\nu}(f)$ as the infimum of (1.2) over those g in N_{ν} with constant part zero; and if $N_{\nu} \cap A_{\kappa}$ is nonempty, $E_{\nu}\left(f, A_{\kappa}\right)$ as the infimum of (1.2) over g in $N_{\nu} \cap A_{\kappa}$.

We show that $E_{\nu}\left(f, A_{\kappa}\right)$ satisfies an estimate of the Jackson type appropriate for κ times continuously differentiable functions. That is, $E_{\nu}\left(f, A_{\kappa}\right)=$ $O\left(e_{\nu}\left(f^{(\kappa)}\right) / \nu^{\kappa}\right)$. Comparing this estimate of $E_{\nu}\left(f, A_{\kappa}\right)$ with $E_{\nu}(f)$ we show that for all $f \in C^{* \kappa}[-\pi, \pi]$

$$
e_{\nu}\left(f^{(\kappa)}\right) / \nu^{\kappa}=O\left(E_{\nu}(f)^{1-\epsilon}\right), \quad \text { for all } \quad \epsilon>0
$$

On the other hand, given any sequence of positive numbers $\left\{h_{\nu}\right\}_{\nu=1}^{\infty}$, increasing without bound, and an A_{κ} including at least one derivative constraint, we can construct an $f \in C^{* \kappa}[-\pi, \pi]$ such that

$$
\lim _{\nu \rightarrow \infty} \sup E_{\nu}\left(f, A_{\kappa}\right) / h_{\nu} E_{\nu}(f) \geqslant 1 .
$$

2. The Man Theorea

Theorem 2.1. For each $\kappa \quad 1,2,3, \ldots$ there exists an $M_{\kappa}>0$, and for each set of side conditions $A_{\kappa}, a \nu_{1}=\nu_{1}\left(\kappa, t_{1}, \ldots, t_{\gamma}\right)$, not depending on f, such that for any $f \in C^{* \kappa}[-\pi, \pi], E_{\nu}\left(f, A_{\kappa}\right)$ exists and satisfies

$$
E_{v}\left(f, A_{\kappa}\right) \leqslant M_{\kappa} e_{v}\left(f^{(\kappa)}\right) / \nu^{\kappa}
$$

for all ν greater than ν_{1}.
Proof. We need the following version of one of the standard Jackson theorems. (For the standard theorem, see for example, Cheney [2, pp. 145-146].)

Lemma 2.2. For all positive integers κ, there exists a positive constant C_{κ}, and for any $f \in C^{* \kappa}[-\pi, \pi]$, a sequence of trigonometric polynomials $\left\{T_{v}: T_{v} \in N_{v}\right\}$ such that

$$
\left\|\left(f-T_{\nu}\right)^{(j)}\right\| \leqslant C_{\kappa}\left(1 / \nu^{\kappa-j}\right) e_{\nu}\left(f^{(\kappa)}\right) ; \quad j=0,1, \ldots, \kappa ; \quad v==1,2,3, \ldots
$$

Proof. Let j_{ν} be the Jackson kernel normalized so that

$$
\begin{equation*}
\int_{-\pi}^{\pi} j_{v}(t) d t=1 \tag{2.1}
\end{equation*}
$$

Write

$$
J_{\nu}(f, x)=\int_{-\pi}^{\pi} f(x+t) j_{\nu}(t) d t
$$

It is well known that there exists an $M>0$ such that

$$
\begin{equation*}
\left\|f-J_{\nu}(f)\right\| \leqslant(M / \nu)\left\|f^{(1)}\right\| \tag{2.2}
\end{equation*}
$$

for all $f \in C^{* 1}[-\pi, \pi]$. The proof now proceeds by induction.
Induction basis. Let t_{ν} be the best approximation to $f^{(\kappa)}$ from N_{ν}, with constant part zero. Let $P(g), g \in C^{*}[\cdots \pi, \pi]$, be the indefinite integral of g such that $\int_{-\pi}^{\pi} P(g)=0$. Let P^{κ} be the κ-wise composition of operators P, and $S_{\nu}=P^{\kappa}\left(t_{v}\right)$. Then

$$
\left\|f^{(\kappa)}-S_{v}^{(\kappa)}\right\|=e_{\nu}\left(f^{(\kappa)}\right), \quad v=1,2,3, \ldots
$$

Induction step. If for some $m=0,1, \ldots, \kappa-1$ and some $C_{m}>0$, there exists a sequence of trigonometric polynomials $\left\{S_{\nu}: S_{\nu} \in N_{\nu}\right\}$ such that

$$
\left\|\left(f-S_{\nu}\right)^{(\kappa-j)}\right\| \leqslant C_{m} \nu^{-j} e_{\nu}\left(f^{(\kappa)}\right) ; \quad j=0, \ldots, m ; \quad \nu=1,2,3, \ldots ;
$$

then there exists $C_{m+1} \leqslant C_{m}(M+2)$ such that

$$
\left\|\left(f-S_{v}-J_{\nu}\left(f-S_{v}\right)\right)^{(\kappa-j)}\right\| \leqslant C_{m+1} \nu^{-j} e_{\nu}\left(f^{(\kappa)}\right) ; \quad \begin{aligned}
& j=0, \ldots, m+1 \\
& \\
& v=1,2,3, \ldots
\end{aligned}
$$

Proof. Use the identity

$$
J_{v}^{(\kappa-j)}\left(f-S_{v}\right)=J_{\nu}\left(\left(f-S_{v}\right)^{(\kappa-j)}\right)
$$

Now the induction step for $j=m+1$ follows from the Jackson theorem (2.2); and that for $j=0, \ldots, m$ is a consequence of $\left\|J_{\nu}\right\|=1$.

Proof of Theorem 2.1. Let T be the unit circle. Let $f ; t_{i}, i=1, \ldots, \gamma$; $K_{i}, i=1, \ldots, \gamma$ satisfy the conditions of Theorem 2.1 ; and let $\left\{T_{\nu}\right\}$ be a sequence of trigonometric polynomials providing the estimate of Lemma 2.2.

By the Hausdorff property of T we can find disjoint open sets $B_{1}, \ldots, B_{\gamma}$ in T containing $t_{1}, \ldots, t_{\gamma}$, respectively. Urysohn's theorem now guarantees the existence of functions $f_{j} \in C(T), j=1, \ldots, \gamma$, such that

$$
\begin{aligned}
f_{j}\left(t_{j}\right)=1, & \\
0 \leqslant f_{j}(t) \leqslant 1, & t \in B_{j}, \\
f_{j}(t)=0, & t \in T \backslash B_{j} .
\end{aligned}
$$

By the SAIN property of trigonometric approximation in conjunction with point evaluations, Deutsch and Morris [3; Theorem 4.1], there exists a ν_{2} such that for $\nu \geqslant \nu_{2}$ there exist approximations $q_{v j}$ from N_{v} to the f_{j} satisfying

$$
\begin{aligned}
& \quad\left\|q_{v j}\right\|=1, \\
& q_{v j}\left(t_{i}\right)=f_{j}\left(t_{i}\right), \quad i=1, \ldots, \gamma ; \quad j=1, \ldots, \gamma,
\end{aligned}
$$

and if $\delta_{v}=\max _{j=1, \ldots, \nu}\left\|q_{v j}-f_{j}\right\|$, then

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} \delta_{v}=0 \tag{2.3}
\end{equation*}
$$

Let $\lambda=[\nu /(\kappa+1)], \lambda_{1}=[\lambda /(\kappa+1)]$, where [$\left.\cdot\right]$ is the integral part function, and let ν_{3} be so large that $\lambda_{1} \geqslant \max \left(\nu_{2}, 1\right)$. Suppose throughout the following that $\nu \geqslant \nu_{3}$. Note

$$
\begin{equation*}
\lambda^{j} \leqslant \nu^{j} \leqslant(2(\kappa+1) \lambda)^{j}, \quad j=1, \ldots, \kappa \tag{2.4}
\end{equation*}
$$

Take

$$
h_{i j}=\left(q_{\lambda_{1}, i}\right)^{\kappa+1}\left(\sin \lambda\left(t-t_{i}\right)\right)^{j}, \quad j=0, \ldots, \kappa ; i=1, \ldots, \gamma
$$

Then

$$
\begin{align*}
&\left\|h_{i j}\right\| \leqslant 1 \tag{2.5}\\
& h_{i j}^{(r)}\left(t_{e}\right)=0 ; r=0, \ldots, \kappa ; e \neq i \tag{2.6}\\
& h_{i j}^{(r)}\left(t_{i}\right)=0, r<j \tag{2.7}
\end{align*}
$$

and

$$
\begin{equation*}
h_{i, j}^{(j)}\left(t_{i}\right)=j!\lambda^{j} \tag{2.8}
\end{equation*}
$$

Also by the Bernstein inequality, (2.5), and (2.4)

$$
\begin{equation*}
\left\|h_{i j}^{(k)}\right\| \leqslant v^{k} \leqslant(2(\kappa+1) \lambda)^{k}, \quad k=1,2, \ldots \tag{2.9}
\end{equation*}
$$

Now fix i. Let j_{1}, \ldots, j_{p} be the members of K_{i} in ascending order. We seek a linear combination of $h_{i 0}, \ldots, h_{i \kappa}$ which will correct the values of $T_{\nu}^{(j)}\left(t_{i}\right)$, $j \in K_{i}$ to the $f^{(j)}\left(t_{i}\right)$. From (2.7), we seek a solution \mathbf{b} to the equation

$$
\left[\begin{array}{cccc}
h_{i j_{1}}^{\left(j_{j}\right)}\left(t_{i}\right) & 0 & \cdots & 0 \tag{2.10}\\
\vdots & & & \vdots \\
h_{i j_{1}}^{\left(j_{j}\right)}\left(t_{i}\right) & \cdots & h_{i j_{p}}^{\left(j_{j}\right)}\left(t_{i}\right)
\end{array}\right]\left[\begin{array}{c}
b_{j_{1}} \\
\\
b_{j_{p}}
\end{array}\right]=\left[\begin{array}{c}
\left(f-T_{\nu}\right)^{\left(j_{1}\right)}\left(t_{i}\right) \\
\left(f-T_{\nu}\right)^{\left(j_{p}\right)}\left(t_{i}\right)
\end{array}\right]
$$

Dividing the k th row of the matrix above, and the k th element of the product vector by $j_{k}!\lambda^{j k}$; and using (2.8) the equation may be written

$$
\left[\begin{array}{cccc}
1 & & & \tag{2.11}\\
a_{21} & 1 & & \\
a_{p^{1}} & & a_{p, p-1} & 1
\end{array}\right]\left[\begin{array}{l}
b_{j_{1}} \\
b_{j_{p}}
\end{array}\right]=\left[\begin{array}{c}
c_{j_{1}} \\
\\
c_{j_{p}}
\end{array}\right] .
$$

Since the matrix $A=\left(a_{k e}\right)$ above is lower triangular and has determinant 1 a solution exists. By (2.9) there exists an M, depending only on κ such that

$$
\left|a_{k e}\right| \leqslant M, \quad k=1, \ldots, p, \quad e=1, \ldots, p
$$

By Lemma 2.2 there exists an L depending only on κ such that

$$
\left|c_{j_{k}}\right| \leqslant L e_{\nu}\left(f^{(\kappa)}\right) / \nu^{\kappa}, \quad k=1, \ldots, p
$$

Employing Cramer's rule,

$$
\begin{equation*}
\left|b_{j_{k}}\right| \leqslant(\kappa+1)!M^{\kappa} L e_{\nu}\left(f^{(\kappa)}\right) / \nu^{\kappa} ; \quad k=1, \ldots, p \tag{2.12}
\end{equation*}
$$

Writing $H_{i}=\sum_{k=1}^{p} b_{j_{k}} h_{i, j_{k}}$, and using (2.12),

$$
\begin{align*}
\left|H_{i}(t)\right| & \leqslant D_{\kappa} e_{\nu}\left(f^{(\kappa)}\right) / \nu^{\kappa}, & & t \in B_{i} \tag{2.13}\\
& \leqslant D_{\kappa} \delta_{\lambda_{2}} e_{\nu}\left(f^{(\kappa)}\right) / \nu^{\kappa}, & & t \in T \backslash B_{i}
\end{align*}
$$

where

$$
D_{\kappa}=(\kappa+1)!(\kappa+1) M^{\kappa} L
$$

The analysis above holds for $i=1, \ldots, \gamma$. Also since by (2.6)

$$
H_{i}^{(r)}\left(x_{e}\right)=0, \quad e \neq i, \quad r=0, \ldots, \kappa
$$

we can find $H_{1}, \ldots, H_{\gamma}$ separately, by the above, and

$$
H=T_{\nu}+\sum_{i=1}^{\nu} H_{i}
$$

will belong to A_{κ}, the set of functions satisfying the interpolatory side conditions. It remains to estimate $\|f-H\|$; using (2.13) we find

$$
\begin{array}{rlr}
|(f-H)|(t) \leqslant & \left|f-T_{\nu}\right|(t)+\left|\sum_{i=1}^{\nu} H_{i}\right|(t) & \\
& C_{\kappa} \frac{e_{\nu}\left(f^{(\kappa)}\right)}{\nu^{\kappa}}+D_{\kappa} \frac{e_{\nu}\left(f^{(\kappa)}\right)}{\nu^{\kappa}}\left(1+(\gamma-1) \delta_{\lambda_{1}}\right) ; & t \in \bigcup_{i=1}^{\nu} B_{i}, \\
\leqslant & C_{\kappa} \frac{e_{\nu}\left(f^{(\kappa)}\right)}{\nu^{\kappa}}+\gamma \delta_{\lambda_{1}} D_{\kappa} \frac{e_{\nu}\left(f^{(\kappa)}\right)}{\nu^{\kappa}} ; & t \in T \bigcup_{i=1}^{\nu} B_{i} .
\end{array}
$$

Thus

$$
\|f-H\| \leqslant\left(C_{\kappa}+2 D_{\kappa}\right)\left(e_{\nu}\left(f^{(\kappa)}\right) / \nu^{\kappa}\right), \quad \nu \geqslant \nu_{1}
$$

where $\nu_{1} \geqslant \nu_{3}$ is chosen so that $\delta_{\lambda_{1}} \leqslant 1 / \gamma, \nu \geqslant \nu_{1}$. This concludes the proof.
Consider now the approximation of $f \in C^{\kappa}[-1,1]$ by algebraic polynomials satisfying Hermite-Birkhoff interpolatory side conditions. Redefining A_{κ}, $E_{\nu}(f)$, and $E_{\nu}\left(f, A_{\kappa}\right)$ appropriately, Platte [5, Theorem 2.3.1] has shown

Theorem 2.3. If $f \in C^{\kappa}[-1,1]$ then there exists a constant C, independent of ν, such that

$$
E_{\nu}\left(f, A_{k}\right) \leqslant C E_{\nu-k}\left(f^{(\kappa)}\right)
$$

The following corollary to Theorem 2.1 dramatically improves this estimate in many cases. In fact, letting $g(\theta)=f(\cos \theta)$ and using the fact that the error in approximating g by trigonometric polynomials of degree not exceeding ν equals the error in approximating f by algebraic polynomials of degree not exceeding ν, the corollary and Lemma 3.1 show

$$
E_{\nu}\left(f, A_{\kappa}\right)=O\left(E_{\nu}(f)^{1-\epsilon}\right) \quad \text { for all } \quad \epsilon>0
$$

whenever the corollary applies.
Corollary 2.4. For each $\kappa=1,2,3, \ldots$, there exists an $M_{\kappa}>0$; and for
each set of side conditions A_{κ}, provided that $-1<t_{i}<1 ; i: 1, \ldots, \gamma: a \nu_{1}$, not depending on f, such that for any $f \in C^{\kappa}[-1,1], E_{\nu}\left(f, A_{\kappa}\right)$ exists and satisfies

$$
E_{v}\left(f, A_{\kappa}\right) \leqslant M_{k} e_{v}\left(g^{(\kappa)}\right) / v^{\kappa}
$$

for all ν greater than ν_{1}, where $g \in C^{* \kappa}[-\pi, \pi]$ is defined by $g(\theta)=f(\cos \theta)$.
Proof. Writing $g(\theta), g^{(1)}(\theta), \ldots, g^{(\kappa)}(\theta)$ in terms of $f(x), \ldots,\left(d^{\kappa} / d x^{\kappa}\right) f(x)$

$$
\left[\begin{array}{c}
g(\theta) \\
g^{(1)}(\theta) \\
\\
g^{(\kappa)}(\theta)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & \cdot & \cdots & 0 \\
& -\sin \theta & & & \vdots \\
& & \sin ^{2} \theta & & 0 \\
& & & & \vdots \\
& & & & (-\sin \theta)^{\kappa}
\end{array}\right]\left[\begin{array}{c}
f(x) \\
(d f / d x)(x) \\
\vdots \\
\left(d^{\kappa} f / d x^{\kappa}\right)(x)
\end{array}\right]
$$

we see that the matrix involved is invertible, $x \neq \pm 1$, and therefore $g(\theta)$, $g^{(1)}(\theta), \ldots, g^{(\kappa)}(\theta)$ are uniquely determined by $f(x), \ldots,\left(d^{\kappa} f / d x^{\kappa}\right)(x), x \neq \pm 1$, and vice versa. Thus to the algebraic interpolation conditions correspond trigonometric interpolation conditions of the same order κ. To each node t_{i} of the algebraic problem, there correspond two nodes $\theta_{2 i-1}, \theta_{2 i}$ of the trigonometric where

$$
\begin{equation*}
0<\theta_{2 i-1}<\pi \quad \text { and } \quad \theta_{2 i}==-\theta_{2 i-1} . \tag{2.14}
\end{equation*}
$$

We apply Theorem 2.1 and find a ν_{1} and a sequence $\left\{T_{\nu\}_{\nu=\nu_{1}}}^{\infty}\right.$ satisfying the trigonometric interpolation conditions, such that

$$
\begin{equation*}
\left\|g-T_{\nu}\right\| \leqslant\left(M_{\kappa} / \nu^{\kappa}\right) e_{\nu}\left(g^{(\kappa)}\right) \tag{2.15}
\end{equation*}
$$

Since the interpolation conditions occur in pairs (see (2.14)) the even functions \widetilde{T}_{ν} given by $\widetilde{T}_{\nu}(\theta)=\left(T_{\nu}(\theta)+T_{\nu}(-\theta)\right) / 2$ satisfy them also. Since g is even (2.15) implies

$$
\begin{equation*}
\left\|g-\widetilde{T}_{\nu}\right\| \leqslant\left(M_{\kappa} / \nu^{\kappa}\right) e_{\nu}\left(g^{(\kappa)}\right) \tag{2.16}
\end{equation*}
$$

Let $p_{v}(x)=\tilde{T}_{v}\left(\cos ^{-1} x\right)$. As discussed previously p_{r} satisfies the interpolation conditions of the algebraic problem. Also (2.16)

$$
\| f-p_{v} \mid=g\left(\cos ^{-1} x\right)-\tilde{T}_{v}\left(\cos ^{-1} x\right) \leqslant\left(M_{\kappa} / v^{\kappa}\right) e_{\nu}\left(g^{(\kappa)}\right)
$$

Since \widetilde{T}_{v} is an even trigonometric polynomial of degree not exceeding ν, $p_{\nu}(x)$ is an algebraic polynomial of degree not exceeding ν. This concludes the proof.
3. Comparison of $E_{\nu}(f)$ and $E_{\nu}\left(f, A_{\kappa}\right)$

The question of a direct comparison of $E_{\nu}(f)$ and $E_{\nu}\left(f, A_{\kappa}\right)$, as opposed to a comparison of $e_{\nu}\left(f^{(\kappa)}\right) / \nu^{\kappa}$ and $E_{\nu}\left(f, A_{\kappa}\right)$ remains. Below we show results in two opposing directions.

Lemma 3.1. If $f \in C^{* \kappa}[-\pi, \pi], \kappa \geqslant 1$, then for all $\epsilon>0$

$$
e_{\nu}\left(f^{(\kappa)}\right) / \nu^{\kappa}=O\left(E_{\nu}(f)^{1-\epsilon}\right) .
$$

Proof. Either f has only a finite number, k, of continuous derivatives or f has an infinite number of continuous derivatives.

In the first case, using the well-known Jackson and Bernstein theorems (see, e.g., Butzer and Nessel [1, Corollary 2.2.4; Theorem 2.3.4]) characterizing the rate at which $E_{\nu}(f)$ goes to zero in terms of the order of magnitude of the second modulus $\omega_{2}\left(f^{(k)}, \delta\right)$, defined by

$$
\omega_{2}(f, \delta)=\sup _{'^{\prime} \leqslant \delta}\|f(o+h)+f(o-h)-2 f(o)\|
$$

we find either
(i) $e_{\nu}\left(f^{(k)}\right)=o(1)$ but $E_{\nu}(f) \nu^{k+\epsilon}$ is unbounded for all $\epsilon>0$; or
(ii) there exists $\alpha, 0<\alpha \leqslant 1$, such that $e_{\nu}\left(f^{(k)}\right)=O\left(\nu^{-\alpha}\right)$ but $E_{\nu}(f) \nu^{k+\alpha+\epsilon}$ is unbounded for all $\epsilon>0$. In either case

$$
\left(1 / \nu^{k}\right) e_{\nu}\left(f^{(k)}\right) / E_{\nu}(f)=O\left(\nu^{\epsilon}\right) \quad \text { for all } \quad \epsilon>0
$$

and since $\nu=O\left(E_{\nu}(f)^{-1 / k}\right)$ this implies

$$
\left(1 / \nu^{k}\right) e_{\nu}\left(f^{(k)}\right)=O\left(E_{\nu}(f)^{1-\xi}\right), \quad \text { for all } \quad \epsilon>0
$$

The desired result follows as $e_{\nu}\left(f^{(\kappa)}\right)=O\left(e_{\nu}\left(f^{(k)}\right) / \nu^{k-\kappa}\right)$.
If f has an infinite number of continuous derivatives, and letting T_{ν} be the best approximation to f from N_{ν}, then for $p=1,2, \ldots$,

$$
\left\|f^{(p)}-T_{\nu}^{(p)}\right\|=O\left(E_{\nu}(f)^{1-\epsilon}\right) \quad \text { for all } \epsilon>0
$$

This follows from a modification of the argument of Platte [5, Theorem 2.3.3]. Briefly fixing $\epsilon, 1>\epsilon>0$, and p, write

$$
\begin{aligned}
\left\|f^{(p)}-T_{\nu}^{(p)}\right\| & \leqslant \sum_{n=\nu}^{\infty}\left\|T_{n+1}^{(p)}-T_{n}^{(p)}\right\| \\
& \leqslant 2 \sum_{n=\nu}^{\infty}(n+1)^{p} E_{n} \\
& \leqslant\left\langle 2 \sum_{n=\nu}^{\infty}(n+1)^{p} E_{n}^{\epsilon}\right\rangle E_{\nu}^{1-\epsilon},
\end{aligned}
$$

where the term in angular brackets is bounded since

$$
E_{n}(f)=O\left(1 / n^{i}\right), \quad k=1,2,3, \ldots
$$

This concludes the proof.
We also have the following, showing that we cannot have any inequality of the form

$$
E_{\nu}\left(f, A_{\kappa}\right)=O\left(G(\nu) E_{\nu}(f)\right)
$$

where $G(\nu)$ does not depend on f. The proof is an adaptation to the trigonometric case of the argument of Lorentz and Zeller [4].

Lemma 3.2. Given any sequence $\left\{h_{\nu}\right\}_{\nu=1}^{\infty}$ of positive numbers, and a set of interpolatory side conditions $A_{\kappa}(\kappa \geqslant 1)$ including at least one constraint on $f^{(\kappa)}$, there exists $f \in C^{* \kappa}[-\pi, \pi]$ such that

$$
\limsup _{v \rightarrow \infty} E_{\nu}\left(f, A_{\kappa}\right) / h_{\nu} E_{\nu}(f) \geqslant 1
$$

Proof. We assume, without loss of generality, that the constraint on $f^{(k)}$ is at $\theta=0$. If $(\kappa \geqslant 1)$ is odd we take $g_{i}=\sin (i \theta), i=1,2,3, \ldots$; if $\kappa(\geqslant 1)$ is even take $g_{i}=\cos (i \theta)$. Given any $b>0$ we can clearly choose an N such that

$$
\begin{equation*}
\sum_{i=1}^{N} i^{\kappa} / N \geqslant b \tag{3.1}
\end{equation*}
$$

Now with $H=\sum_{i=1}^{N} g_{i} / N$

$$
\begin{equation*}
\left|H^{(\kappa)}(0)\right| \geqslant b, \quad\|H\| \leqslant 1 \tag{3.2}
\end{equation*}
$$

Take

$$
\begin{equation*}
b_{v}=2 \nu^{\kappa}\left(h_{v}+1\right), \quad v=1,2, \ldots \tag{3.3}
\end{equation*}
$$

and $N_{0}=1$. Given $N_{j-1}(j \geqslant 1)$, there exists, according to (3.2), a polynomial, f_{j}, such that

$$
\begin{equation*}
\left|f_{i}^{(k)}(0)\right| \geqslant b_{N_{j-1}}, \quad\left\|f_{j}\right\| \leqslant 1 \tag{3.4}
\end{equation*}
$$

We denote the degree of this polynomial by N_{j}.
The function f of the theorem will be given by the series

$$
f=\sum_{j=1}^{\infty} c_{j} f_{j}
$$

where the $c_{j}>0$ satisfy

$$
\begin{equation*}
c_{j} \leqslant j^{-2} M_{j}^{-1}, \quad M_{j}=\max \left(\left\|f_{j}\right\|_{, \ldots,}\left\|f_{j}^{(\kappa)}\right\|\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=\nu+1}^{\infty} c_{j} \leqslant c_{\nu}\left\|f_{\nu}\right\| \tag{3.6}
\end{equation*}
$$

For instance, we can define the numbers c_{i} inductively by means of the relation

$$
c_{i}=\min \left\{\frac{1}{2} c_{i-1}\left\|f_{i-1}\right\|, \ldots, 2^{(1-i)} c_{1}\left\|, f_{1}\right\|^{-2} i_{i}^{-1}\right\}, \quad i=2,3, \ldots
$$

Note that (3.5) implies f is κ times continuously differentiable. Let

$$
F_{\nu}=\sum_{i=1}^{\nu} c_{i} f_{i}
$$

Clearly

$$
E_{N_{v-1}}(f) \leqslant\left\|f-F_{\nu-1}\right\|=\left\|\sum_{i=v}^{\infty} c_{i} f_{i}\right\|, \quad v=2,3, \ldots,
$$

and using (3.6)

$$
\begin{equation*}
E_{N_{v-1}}(f) \leqslant 2 c_{v}\left\|f_{v}\right\| . \tag{3.7}
\end{equation*}
$$

Let Q be any trigonometric polynomial of degree not exceeding $N_{\nu-1}$ such that $Q^{(\kappa)}(0)=f^{(\kappa)}(0)$.

Writing

$$
\|Q-f\| \geqslant\left\|Q-F_{v-1}\right\|-\left\|F_{v-1}-f\right\|
$$

it follows using Bernstein's inequality that

$$
Q-f\left\|\geqslant c_{v}\left|f_{v}^{(\kappa)}(0)\right| / N_{v-1}^{\kappa}-2 c_{v}\right\| f_{v} \|,
$$

and by (3.3), (3.4) that

$$
\|Q-f\| \geqslant 2 c_{v} h_{N_{v-1}}
$$

Since Q was an arbitrary polynomial subject to $Q^{(\kappa)}(0)=f^{(\kappa)}(0)$ it follows that

$$
\begin{equation*}
E_{N_{v-1}}\left(f, A_{\kappa}\right) \geqslant 2 c_{\nu} h_{N_{v-1}} \tag{3.8}
\end{equation*}
$$

(3.7) and (3.8) together imply

$$
E_{N_{v-1}}\left(f, A_{\kappa}\right) / E_{N_{v-1}}(f) \geqslant h_{N_{v-1}}, \quad v=2,3, \ldots
$$

the desired result.

Note added in proof. Further results regarding approximation by algebraic polynomials satisfying Hermite-Birkhoff interpolatory side conditions can be found in R. K. Beatson, "Degree of Approximation Theorems for Approximation with Side Conditions," Dissertation, University of Canterbury, Christchurch, New Zealand, 1978.

References

1. P. L. Butzer and R. J. Nessel, "Fourier Analysis and Approximation," Vol. 1, Birkhäuser--Verlag, Stuttgart, 1971.
2. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
3. F. Deutsch and P. D. Morris, On simultaneous approximation and interpolation which preserves the norm, J. Approximation Theory 2 (1969), 355-373.
4. G. G. Lorentz and K. L. Zeller, Degree of approximation by monotone polynomials. II, J. Approximation Theory 2 (1969), 265-269.
5. D. M. Platte, "Approximation with Hermite-Birkhoff Interpolatory Constraints and Related H Set Theory," Ph.D. Dissertation, Michigan State University, 1972.
