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1. INTRODUCTION

In this paper we obtain estimates for the cost of Hermite-Birkhoff inter~

polatory side conditions, placed on uniform approximation by trigonometric
polynomials.

Given a positive integer K; a finite set t1 , ••• , ty of distinct points in
--TT ~ t < TT; for each i = 1,... , y, a nonempty subset Ki of the set
{O, I, ... , K}; andfE C*K[ -TT, TT], define the set of Ktimes continuously differen­
tiable 2TT periodic functions; the set AK= {g E C*K[-TT, TT]: g(j)(ti ) = jU)(ti );

j E Ki ; i = I,..., y}. Let N v be the space of trigonometric polynomials of
degree not exceeding v. For each v = 0, 1,2,3,... , define

where

Elf) = inf Ilf - gil,
gENv

Ilf - gil = sup IJ(t) - g(t)l.
-1T<}<;1T

(1.1)

(1.2)

Similarly define evef) as the infimum of (1.2) over those g in Nvwith constant
part zero; and if Nv (') AKis nonempty, Ev(f, AK) as the infimum of (1.2) over
g in N v (') A K •

We show that Ev(f, AK) satisfies an estimate of the Jackson type appropriate
for K times continuously differentiable functions. That is, Elf, AK) =

O(ev(fIK)/vK). Comparing this estimate of Ev(f, AK) with Ev(f) we show that
for allfE C*K[ -TT, TT]

for all € > 0.

On the other hand, given any sequence of positive numbers {hv}':1 , increasing
without bound, and an AK including at least one derivative constraint, we can
construct anfE C*K[ -TT, TT] such that

lim sup Elf, AJ/hvEv(f) ;): I.
V->oo
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2. THE MAIN THEURDI

THEOREM 2.1. For each K J, 2, 3,... there exists an At" 0, and ii),.
each set of side conditions A" , a )11 v1( K, t l , ... , t), not depending on f, such
that for any f E C*K[ -7T, 7T], Elf, AJ exists and satisfies

for all v greater than )11 •

Proof We need the following version of one of the standard Jackson
theorems. (For the standard theorem, see for example, Cheney [2,
pp. 145-146].)

LEMMA 2.2. Fo,. all positive integers K, there exists a positive constant C" ,
and for any fE C*K[ -7T, 7T], a sequence of trigonometric polynomials
{Tv: Tv E Nv} such that

)= 0, I, ... , K; )1 == 1,2,3,....

Proof Let)v be the Jackson kernel normalized so that

r )It) dt
-IT

1. (2.1)

Write

Jv(j, x)= r j(x -i-- t)Mt) dt
--rr

It is well known that there exists an M > 0 such that

lif - Jv(f)II ~ (MIl') Ilj(1) II, (2.2)

for allfE C*I[ -7T, 7T]. The proof now proceeds by induction.

Induction basis. Let tv be the best approximation to j(K) from Nv , with
constant part zero. Let P( g), g E C*[ -7T, 7T], be the indefinite integral of g
such that J:rr P( g) = O. Let PK be the K-wise composition of operators P,
and Sv = pK(tv)' Then

v ~'c 1,2,3, ....

Induction step. If for some m = 0, 1,... , K - 1 and some Cm > 0, there
exists a sequence of trigonometric polynomials {Sv: Sv E Nv} such that

) =O,... ,m; v = 1,2,3,... ;
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then there exists Cm+! :s;; Cm(M + 2) such that

IIU - Sv - JvU - Sv))<K-j) II :s;; Cm+Iv-jev(f(K);

Proof Use the identity

j =-, 0, ... , m + 1;
v = 1,2,3,....

t EBj ,

tE TIBj •

Now the induction step for j = m + 1 follows from the Jackson theorem
(2.2); and that for j = 0, ... , m is a consequence of II Jv II = 1.

Proof of Theorem 2.1. Let T be the unit circle. Let f; ti , i = 1,... , y;
Ki , i = 1, ... , y satisfy the conditions of Theorem 2.1; and let {Tv} be a
sequence of trigonometric polynomials providing the estimate of Lemma 2.2.

By the Hausdorff property of T we can find disjoint open sets B I , ... , By
in T containing tl , ... , ty , respectively. Urysohn's theorem now guarantees
the existence of functions}j E C(T), j = 1,... , y, such that

}j(tj ) = 1,
°~}j(t) :s;; 1,

}j(t) = 0,

By the SAIN property of trigonometric approximation in conjunction
with point evaluations, Deutsch and Morris [3; Theorem 4.1], there exists
a V2 such that for v ;? V2 there exist approximations qvj from Nv to the}j
satisfying

II qvj II = 1,
qvlti) = }j(ti), i = 1,..., y;

and if 8v = maxj=I..... y II qvj -iJ II, then

lim 8v = 0.
v....OO

j = 1,..., y,

(2.3)

Let ,1.= [V/(K + 1)], Al = [A/(K + 1)], where [.] is the integral part function,
and let Va be so large that Al ;? max(v2 , 1). Suppose throughout the following
that v ;? Va • Note

Take

Then

j = 1,..., K.

j = 0,... , K; i = 1,..., y.

(2.4)

'Ii hij II :s;; 1,

h(~)(t ) = 0'lJ e ,

h~;)(ti) = 0,

r = 0,..., K; e =1= i,

r <j,

(2.5)

(2.6)

(2.7)
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(2.8)

Also by the Bernstein inequality, (2.5), and (2.4)

" J (k) ·1 <' k ~ (2( 'I) \)kIi Ii; I "" v ~ K I 1\, k = 1,2,.... (2.9)

Now fix i. LetA ,... ,jp be the members of Ki in ascending order. We seek
a linear combination of hiO , ••• , hiK which will correct the values of TJj)(t i ),

j E Ki to the f(j)(ti ). From (2.7), we seek a solution b to the equation

(2.10)

Dividing the kth row of the matrix above, and the kth element of the product
vector by jk! ,\jk; and using (2.8) the equation may be written

(2.11)

Since the matrix A = (ake) above is lower triangular and has determinant 1
a solution exists. By (2.9) there exists an M, depending only on K such that

k = l, ...,p, e = I, ... ,p.

By Lemma 2.2 there exists an L depending only on K such that

Employing Cramer's rule,

k = 1, ... ,p.

Writing Hi = L:~l b;khuk ' and using (2.12),

where

k = I, ... ,p.

t E Bi ,

t E T\Bi ,

(2.12)

(2.13)
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The analysis above holds for i = 1,... , y. Also since by (2.6)

99

H (r)(x) = 0
~ e , e =/c- i, r = 0, ... , K,

we can find HI,"" H y separately, by the above, and

y

H = Tv + L Hi
i~I

will belong to AK , the set of functions satisfying the interpolatory side
conditions. It remains to estimate [if - H II; using (2.13) we find

IU - H)[ (t) ~ If - Tv I (t) + I±Hi I(t)
,~I

t E T\ UBi.
i~I

Thus

where VI ;? V3 is chosen so that OA, ~ IIY, V ;? VI' This concludes the proof.
Consider now the approximation ofjE CK[-I, I] by algebraic polynomials

satisfying Hermite-Birkhoff interpolatory side conditions. Redefining AK ,

Ev(f), and Elf, A K ) appropriately, Platte [5, Theorem 2.3.1] has shown

THEOREM 2.3. Iff E CK[-I, I] then there exists a constant C, independent
of v, such that

The following corollary to Theorem 2.1 dramatically improves this estimate
in many cases. In fact, letting g(B) = f(cos B) and using the fact that the
error in approximating g by trigonometric polynomials of degree not
exceeding V equals the error in approximating f by algebraic polynomials
of degree not exceeding v, the corollary and Lemma 3.1 show

for all € > 0

whenever the corollary applies.

COROLLARY 2.4. For each K = 1,2,3,... , there exists an M K > 0; andfor
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each set of side conditions A, , provided that -- [ <, f, < I; i I .... , /< a 1'1 ,

not depending on!, such that for any f E C,[ - I, 1], Ev(J, A K ) exists and satisfies

for all v greater than 1'1 , where g E C*K[-17, 17] is defined by gee) f(cos e).

Proof Writing gee), g(l)(e), ... , g(K)(e) in terms of f(x), ... , (d'jdxK)f(x)

[

gee) ] [Ig(l)(e) =

g(K)(e)

o
-- sin e a ] [ f(x) ]: (dfjdx)(x)

(- I 0)" (d''fldx<Xx)

we see that the matrix involved is invertible, x ± 1, and therefore gee),
g(l)(8), ... , g(K)(e) are uniquely determined by f(x), ... , (d"fjdxK)(x), X c:J~ ± 1,
and vice versa. Thus to the algebraic interpolation conditions correspond
trigonometric interpolation conditions of the same order K. To each node t i

of the algebraic problem, there correspond two nodes 82i l' e2i of the
trigonometric where

and (2.14)

We apply Theorem 2.1 and find a 1'1 and a sequence {Tv};:v, satisfying the
trigonometric interpolation conditions, such that

(2.15)

(2.16)

Since the interpolation conditions occur in pairs (see (2.14)) the even
functions Tv given by Tv(8) = (Tv(8) -+- Tv(-8))j2 satisfy them also. Since g
is even (2.15) implies

Let Pv(x) 1'v(cos-1 x). As discussed previously p, satisfies the interpolation
conditions of the algebraic problem. Also (2.16)

Ilf -- Pv = g(cos-1 x) - Tv(cos-1 x)li z~ (M,jvK
) ev(g(K)).

Since Tv is an even trigonometric polynomial of degree not exceeding v,

Pv(x) is an algebraic polynomial of degree not exceeding v. This concludes the
proof.

3. COMPARISON OF Elf) AND Elf, A K )

The question of a direct comparison of Elf) and Ev(f, A K ), as opposed
to a comparison of elj<K))!vKand Elf, AJ remains. Below we show results
in two opposing directions.
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LEMMA 3.1. IIIE C*K[ -7T,7T], K ~ I, thenlor all E > 0
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Proof EitherI has only a finite number, k, of continuous derivatives orI
has an infinite number of continuous derivatives.

In the first case, using the well-known Jackson and Bernstein theorems
(see, e.g., Butzer and Nessel [I, Corollary 2.2.4; Theorem 2.3.4]) character­
izing the rate at which E.(f) goes to zero in terms of the order of magnitude
of the second modulus w 2(f(k), 8), defined by

W2(f, 8) = sup Ilf(o + 17) -+ f(o - 17) - 2f(0)11
'h l <C6

we find either

(i) e.(flk» = 0(1) but E.(f) vk+< is unbounded for all E > 0;

or

(ii) there exists ex, 0 < ex :s;; I, such that e.(f(kl) = O(v-") but
Elf) vk+"+< is unbounded for all E > O. In either case

for all E > 0,

and since v = O(Ev(f)-l/k) this implies

for all E > O.

The desired result follows as eljlKl) = O(e.(flkl)jvk- K).

IfIhas an infinite number of continuous derivatives, and letting T. be the
best approximation to I from N. , then for p = I, 2,... ,

for all E > O.

This follows from a modification of the argument ofPlatte [5, Theorem 2.3.3].
Briefly fixing E, I > E > 0, and p, write

Ilf(p) - T.(p) II :s;; f II T~~)l - T,~p) II
n=v

n=v
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where the term in angular brackets is bounded since

EIIU) O( I /n l,), k = 1,2,3,....

This concludes the proof.
We also have the following, showing that we cannot have any inequality

of the form
EvCf, AJ = O(G(v) EvC!)),

where G(v) does not depend on f The proof is an adaptation to the trigono­
metric case of the argument of Lorentz and Zeller [4].

LEMMA 3.2. Given any sequence {hv}:'l of positive numbers, and a set of
interpolatory side conditions A K (K ;:?: 1) including at least one constraint on
11K ), there exists fE C*K[ -7T, 7T] such that

Proof We assume, without loss of generality, that the constraint on IlK)

is at 8 = O. If (K ;:?: 1) is odd we take gi = sin(i8), i = 1,2,3,... ; if K (;:;::c I)

is even take gi = cos(i8). Given any b > 0 we can clearly choose an N such
that

Now with H = L:l gdN

]V

L iKjN ;:?: h.
-l:=,l

(3.1 )

Take

II H II :s; 1.

v = 1,2,... ,

(3.2)

(3.3)

and No = 1. Given Nj-l (j ;:?: 1), there exists, according to (3.2), a poly­
nomial, fj , such that

Ilfj II :s; 1. (3.4)

We denote the degree of this polynomial by N j •

The functionf of the theorem will be given by the series

where the Cj > 0 satisfy

M j = max(IIJi 11, ••• , II f~K) 11), (3.5)
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L Cj ~ Cv iff., Ii.
j~v+l
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(3.6)

For instance, we can define the numbers Ci inductively by means of the
relation

i = 2,3, ....

Note that (3.5) impliesfis K times continuously differentiable. Let

Fv = Lcd;.
i~l

Clearly

EN"jf) ~ Ilf - Fv-11i = II f Cih II,
t=/.-·

and using (3.6)

v = 2,3,... ,

(3.7)

Let Q be any trigonometric polynomial of degree not exceeding NV - 1 such
that Q(K)(O) = j!K)(O).

Writing

II Q - fll ~ II Q - F v- 1 II - II Fv- 1 - fl!

it follows using Bernstein's inequality that

and by (3.3), (3.4) that

Since Q was an arbitrary polynomial subject to Q(K)(O) = j(K)(O) it follows
that

(3.8)

(3.7) and (3.8) together imply

v = 2,3.... ;

the desired result.
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Note added in proof Further results regarding approximation by algebraic polynomials
satisfying Hermite-Birkhoff interpolatory side conditions can be found in R. K. BEATSON,
"Degree of Approximation Theorems for Approximation with Side Conditions," Disserta­
tion, University of Canterbury, Christchurch, New Zealand, 1978.
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